Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Large Language Models (LLMs) have extensive ability to produce promising output. Nowadays, people are increasingly relying on them due to easy accessibility, rapid and outstanding outcomes. However, the use of these results without appropriate scrutiny poses serious security risks, particularly when they are integrated with other software, APIs, or plugins. This is because the LLM outputs are highly dependent on the prompts they receive. Therefore, it is essential to carefully clean these outputs before using them in additional software environments. This paper is designed to teach students about the potential dangers of contaminated LLM output within the context of web development through prelab, handson, and postlab experiences. Hands-on lab provides practical guidance on how to handle LLM vulnerabilities to make applications safe with some real-world examples in Python. This approach aims to provide students with a deeper understanding of the precautions necessary to ensure software against the vulnerabilities introduced by LLM output.more » « less
-
Large Language Models (LLMs) have extensive ability to produce promising output. Nowadays, people are increasingly relying on them due to easy accessibility, rapid and outstanding outcomes. However, the use of these results without appropriate scrutiny poses serious security risks, particularly when they are integrated with other software, APIs, or plugins. This is because the LLM outputs are highly dependent on the prompts they receive. Therefore, it is essential to carefully clean these outputs before using them in additional software environments. This paper is designed to teach students about the potential dangers of contaminated LLM output within the context of web development through prelab, handson, and postlab experiences. Hands-on lab provides practical guidance on how to handle LLM vulnerabilities to make applications safe with some real-world examples in Python. This approach aims to provide students with a deeper understanding of the precautions necessary to ensure software against the vulnerabilities introduced by LLM output.more » « less
-
The field of DevOps security education necessitates innovative approaches to effectively address the ever evolving challenges of cybersecurity. Adopting a student-centered approach, there is the need for the design and development of a comprehensive set of hands-on learning modules. In this paper, we introduce hands-on learning modules that enable learners to be familiar with identifying known security weaknesses, based on taint tracking to accurately pinpoint vulnerable code. To cultivate an engaging and motivating learning environment, our hands-on approach includes a pre-lab, hands-on and post-lab sections. They all provide introduction to specific DevOps topics and software security problems at hand, followed by practicing with real world code examples having security issues to detect them using tools. The initial evaluation results from a number of courses across multiple schools show that the hands-on modules are enhancing the interests among students on software security and cybersecurity, while preparing them to address DevOps security vulnerabilities.more » « less
-
The main objective of authentic learning is to offer students an exciting and stimulating educational setting that provides practical experiences in tackling real-world security issues. Each educational theme is composed of pre-lab, lab, and post-lab activities. Through the application of authentic learning, we create and produce portable lab equipment for AI Security and Privacy on Google CoLab. This enables students to access and practice these hands-on labs conveniently and without the need for time-consuming installations and configurations. As a result, students can concentrate more on learning concepts and gain more experience in hands-on problem-solving abilitiesmore » « less
-
Quantum machine learning (QML) is an emerging field of research that leverages quantum computing to improve the classical machine learning approach to solve complex real world problems. QML has the potential to address cybersecurity related challenges. Considering the novelty and complex architecture of QML, resources are not yet explicitly available that can pave cybersecurity learners to instill efficient knowledge of this emerging technology. In this research, we design and develop QML-based ten learning modules covering various cybersecurity topics by adopting student centering case-study based learning approach. We apply one subtopic of QML on a cybersecurity topic comprised of pre-lab, lab, and post-lab activities towards providing learners with hands-on QML experiences in solving real-world security problems. In order to engage and motivate students in a learning environment that encourages all students to learn, pre-lab offers a brief introduction to both the QML subtopic and cybersecurity problem. In this paper, we utilize quantum support vector machine (QSVM) for malware classification and protection where we use open source Pennylane QML framework on the drebin 215 dataset. We demonstrate our QSVM model and achieve an accuracy of 95% in malware classification and protection. We will develop all the modules and introduce them to the cybersecurity community in the coming days.more » « less
An official website of the United States government

Full Text Available